If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2=-1+10k
We move all terms to the left:
7k^2-(-1+10k)=0
We add all the numbers together, and all the variables
7k^2-(10k-1)=0
We get rid of parentheses
7k^2-10k+1=0
a = 7; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·7·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{2}}{2*7}=\frac{10-6\sqrt{2}}{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{2}}{2*7}=\frac{10+6\sqrt{2}}{14} $
| 2+5d=60 | | 18p-1=-6+17p | | (3x+53)+6x-35=180 | | 200=(10b25)-15b | | u/9.3=4u+6.28 | | 34(x-13)=-2(9+x) | | f=162/18 | | 200=(10b=25)-15b | | 5=-2c-11 | | 9x^2-10=15 | | b-6/5=1 | | 90=(3x+5)+(5x-18) | | -10=5+5(p+2) | | 69x+2=140 | | 6(x+6)=2x+48 | | 7v+36=8-6v-30 | | x2-19x+84=0 | | -6=3b-b | | 6x^2=8x+110 | | -83+12x=9x+28 | | 18f=162 | | 2x+5+x=7+4x-10 | | (6x+18)+(x+93)=180 | | (b-3)-(b+8)=9b | | 6x+18=x+94 | | 3.2x+2x=2693 | | 2y+7=-15 | | 56=1/2h(10+1) | | -6(1-6r)=282 | | 4=9+5x | | 4.8k+12.38=16.06+5.2k | | (2x+1)(x—1/2)=0 |